189 research outputs found

    Enhancing Social-Emotional Health and Wellbeing in the Early Years (E-SEE): A study protocol of a community-based randomised controlled trial with process and economic evaluations of the incredible years infant and toddler parenting programmes, delivered in a proportionate universal model

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.Introduction: Behavioural and mental disorders have become a public health crisis and by 2020 may surpass physical illness as a major cause of disability. Early prevention is key. Two Incredible Years (IY) parent programmes that aim to enhance child well-being and development, IY Infant and IY Toddler, will be delivered and evaluated in a proportionate universal intervention model called Enhancing Social-Emotional Health and Wellbeing in the Early Years (E-SEE) Steps. The main research question is: Does E-SEE Steps enhance child social emotional well-being at 20 months when compared with services as usual? Methods and analysis: E-SEE Steps will be delivered in community settings by Early Years Children's Services and/or Public Health staff across local authorities. Parents of children aged 8 weeks or less, identified by health visitors, children's centre staff or self-referral, are eligible for participation in the trial. The randomisation allocation ratio is 5:1 (intervention to control). All intervention parents will receive an Incredible Years Infant book (universal level), and may be offered the Infant and/or Toddler group-based programme/s - based on parent depression scores on the Patient Health Questionnaire or child social emotional well-being scores on the Ages and Stages Questionnaire: Social Emotional, Second Edition (ASQ:SE-2). Control group parents will receive services as usual. A process and economic evaluation are included. The primary outcome for the study is social emotional well-being, assessed at 20 months, using the ASQ:SE-2. Intention-to-treat and per protocol analyses will be conducted. Clustering and hierarchical effects will be accounted for using linear mixed models. Ethics and dissemination: Ethical approvals have been obtained from the University of York Education Ethics Committee (ref: FC15/03, 10 August 2015) and UK NHS REC 5 (ref: 15/WA/0178, 22 May 2015. The current protocol is Version 9, 26 February 2018. The sponsor of the trial is the University of York. Dissemination of findings will be via peer-reviewed journals, conference presentations and public events.National Institute for Health Research (NIHR

    DNA content of a functioning chicken kinetochore

    Get PDF
    ยฉ The Author(s) 2014. In order to understand the three-dimensional structure of the functional kinetochore in vertebrates, we require a complete list and stoichiometry for the protein components of the kinetochore, which can be provided by genetic and proteomic experiments. We also need to know how the chromatin-containing CENP-A, which makes up the structural foundation for the kinetochore, is folded, and how much of that DNA is involved in assembling the kinetochore. In this MS, we demonstrate that functioning metaphase kinetochores in chicken DT40 cells contain roughly 50 kb of DNA, an amount that corresponds extremely closely to the length of chromosomal DNA associated with CENP-A in ChIP-seq experiments. Thus, during kinetochore assembly, CENP-A chromatin is compacted into the inner kinetochore plate without including significant amounts of flanking pericentromeric heterochromatin. ยฉ 2014 The Author(s).Wellcome Trust [grant number 073915]; Wellcome Trust Centre for Cell Biology (core grant numbers 077707 and 092076); Darwin Trust of Edinburg

    Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes

    Get PDF
    Copyright: ยฉ 2010 Stimpson et al.Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extrachromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.This work was supported by the Tumorzentrum Heidelberg/Mannheim grant (D.10026941)and by March of Dimes Research Foundation grant #1-FY06-377 and NIH R01 GM069514

    The centrosome and spindle as a ribonucleoprotein complex

    Get PDF
    Author Posting. ยฉ The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Chromosome Research 19 (2011): 367-376, doi:10.1007/s10577-011-9186-7.The presence of nucleic acids in centrosomes and the spindle have been proposed, observed, and reported since the 1950s. Why did the subject remain, perhaps even until today, such a controversial issue? The explanation is manifold, and includes legitimate concern over contamination from other cellular compartments in biochemical preparations. With a typically high background of cytoplasmic ribosomes, even microscopic images of stained intact cells could be difficult to interpret. Also, evidence for RNA and DNA in centrosomes accumulated for approximately 40 years but was interspersed with contradictory studies, primarily regarding the presence of DNA (reviewed in Johnson and Rosenbaum, 1991; Marshall and Rosenbaum, 2000). Perhaps less tangible but still a likely cause for lingering controversy is that the presence of nucleic acids in the spindle or centrosomes will require us to look differently at these structures from a functional, and more to the point, evolutionary standpoint.This work was supported by grants from the NIH (GM088503) and NSF (MCB0843092) to MCA

    A Conserved Arginine-Rich Motif within the Hypervariable N-Domain of Drosophila Centromeric Histone H3 (CenH3CID) Mediates BubR1 Recruitment

    Get PDF
    Centromere identity is determined epigenetically by deposition of CenH3, a centromere-specific histone H3 variant that dictates kinetochore assembly. The molecular basis of the contribution of CenH3 to centromere/kinetochore functions is, however, incompletely understood, as its interactions with the rest of centromere/kinetochore components remain largely uncharacterised at the molecular/structural level.Here, we report on the contribution of Drosophila CenH3(CID) to recruitment of BubR1, a conserved kinetochore protein that is a core component of the spindle attachment checkpoint (SAC). This interaction is mediated by the N-terminal domain of CenH3(CID) (NCenH3(CID)), as tethering NCenH3(CID) to an ectopic reporter construct results in BubR1 recruitment and BubR1-dependent silencing of the reporter gene. Here, we also show that this interaction depends on a short arginine (R)-rich motif and that, most remarkably, it appears to be evolutionarily conserved, as tethering constructs carrying the highly divergent NCenH3 of budding yeast and human also induce silencing of the reporter. Interestingly, though NCenH3 shows an exceedingly low degree of conservation, the presence of R-rich motives is a common feature of NCenH3 from distant species. Finally, our results also indicate that two other conserved sequence motives within NCenH3(CID) might also be involved in interactions with kinetochore components.These results unveil an unexpected contribution of the hypervariable N-domain of CenH3 to recruitment of kinetochore components, identifying simple R-rich motives within it as evolutionary conserved structural determinants involved in BubR1 recruitment

    Challenge and promise: the role of miRNA for pathogenesis and progression of malignant melanoma

    Get PDF
    microRNAs are endogenous noncoding RNAs that are implicated in gene regulation. More recently, miRNAs have been shown to play a pivotal role in multiple cellular processes that interfere with tumorigenesis. Here we summarize the essential role of microRNAs for human cancer with special focus on malignant melanoma and the promising perspectives for cancer therapies

    Esperanto for histones : CENP-A, not CenH3, is the centromeric histone H3 variant

    Get PDF
    The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres

    Cisplatin-induced emesis: systematic review and meta-analysis of the ferret model and the effects of 5-HT3 receptor antagonists

    Get PDF
    PURPOSE: The ferret cisplatin emesis model has been used for ~30ย years and enabled identification of clinically used anti-emetics. We provide an objective assessment of this model including efficacy of 5-HT(3) receptor antagonists to assess its translational validity. METHODS: A systematic review identified available evidence and was used to perform meta-analyses. RESULTS: Of 182 potentially relevant publications, 115 reported cisplatin-induced emesis in ferrets and 68 were included in the analysis. The majority (nย =ย 53) used a 10ย mgย kg(โˆ’1) dose to induce acute emesis, which peaked after 2ย h. More recent studies (nย =ย 11) also used 5ย mgย kg(โˆ’1), which induced a biphasic response peaking at 12ย h and 48ย h. Overall, 5-HT(3) receptor antagonists reduced cisplatin (5ย mgย kg(โˆ’1)) emesis by 68% (45โ€“91%) during the acute phase (day 1) and by 67% (48โ€“86%) and 53% (38โ€“68%, all Pย <ย 0.001), during the delayed phase (days 2, 3). In an analysis focused on the acute phase, the efficacy of ondansetron was dependent on the dosage and observation period but not on the dose of cisplatin. CONCLUSION: Our analysis enabled novel findings to be extracted from the literature including factors which may impact on the applicability of preclinical results to humans. It reveals that the efficacy of ondansetron is similar against low and high doses of cisplatin. Additionally, we showed that 5-HT(3) receptor antagonists have a similar efficacy during acute and delayed emesis, which provides a novel insight into the pharmacology of delayed emesis in the ferret

    Modelling the Influence of Foot-and-Mouth Disease Vaccine Antigen Stability and Dose on the Bovine Immune Response

    Get PDF
    Foot and mouth disease virus causes a livestock disease of significant global socio-economic importance. Advances in its control and eradication depend critically on improvements in vaccine efficacy, which can be best achieved by better understanding the complex within-host immunodynamic response to inoculation. We present a detailed and empirically parametrised dynamical mathematical model of the hypothesised immune response in cattle, and explore its behaviour with reference to a variety of experimental observations relating to foot and mouth immunology. The model system is able to qualitatively account for the observed responses during in-vivo experiments, and we use it to gain insight into the incompletely understood effect of single and repeat inoculations of differing dosage using vaccine formulations of different structural stability
    • โ€ฆ
    corecore